蛋白激酶c磷酸化位点结构域有什么作用,酶的磷酸化和去磷酸化位点通常在

 2023-06-07  阅读 1116  评论 0

摘要:酶的磷酸化和去磷酸化位点通常在总的来讲包括共价修饰和别构修饰。共价修饰又包括磷酸化/去磷酸化修饰、乙酰化修饰等。别构修饰也就是通过在别构酶的别构中心结合小分子,改变其构象,从而调节酶活性。生物体内部的

酶的磷酸化和去磷酸化位点通常在

总的来讲包括共价修饰和别构修饰。共价修饰又包括磷酸化/去磷酸化修饰、乙酰化修饰等。别构修饰也就是通过在别构酶的别构中心结合小分子,改变其构象,从而调节酶活性。生物体内部的酶,叫做蛋白激酶,它们的作用就是对目的蛋白的特定位点进行磷酸化。磷酸化本身只有一个作用,就是在氨基酸残基上(常为丝氨酸)共价连接一个磷酸集团。引入磷酸集团之后,目的蛋白的分子构象发生变化,造成酶活力的缺失或者获得。

与磷酸化和去磷酸化最为密切相关的,就是细胞内的信号级联放大系统。简单来说,就是细胞针对外界各种信号(物理或者化学)在体内引发一系列指数级的催化反应(多为磷酸化),导致核内特定基因的表达,成功完成对外界信号的应激性。当这种应激完成之后,再经由去磷酸化去除这些蛋白的活力,使细胞恢复到正常状态。

酶的磷酸化和去磷酸化作用属于

光合磷酸化的机理同线粒体进行的氧化磷酸化相似,同样可用化学渗透学说来说明。在电子传递和ATP合成之间, 起偶联作用的是膜内外之间存在的质子电化学梯度。

类囊体膜进行的光合电子传递与光合磷酸化需要四个跨膜复合物参加:光系统Ⅱ、细胞色素b6/f复合物、光系统Ⅰ和ATP合酶。有三个可动的分子(质子):质体醌、质体蓝素和H+质子将这四个复合物在功能上连成一体:即完成电子传递、建立质子梯度、合成ATP和NADPH。

酶的磷酸化与去磷酸化属于哪种调节方式

磷酸化,将磷酸基团加在中间代谢产物上或加在蛋白质(protein)上的过程。其中除去磷酸基团的酶称为磷酸酶。 蛋白质磷酸化可发生在许多种类的氨基酸(蛋白质的主要单位)上,其中以丝氨酸为多,接着是苏氨酸。 去磷酸化:磷酸基团的除去,对许多生物起着“开/关”作用。防止质粒载体的自身连接,最常用于质粒进行单酶切连接时。

酶的磷酸化和去磷酸化位点通常在哪一种氨基酸残基上?

脂肪酸合酶含有两个等同的多功能单链(形成同源二聚体),每一条氨基酸链的N端区域含有三个催化结构域(酮脂酰合成酶、脱水酶和单酰/乙酰转移酶]]),而C端区域则含有四个结构域(醇还原酶、酮脂酰还原酶、酰基载体蛋白和硫酯酶),这两个区域被中间600个氨基酸残基组成的核心区域所分隔。

脂肪酸合酶组构的传统模型(“头对尾”模型)大部分是基于双功能试剂1,3-dibromopropanone(DBP)能够将一个脂肪酸合酶单体上的酮脂酰合成酶结构域活性位点上的半胱氨酸(Cys161)的巯基和另一个单体上的载体蛋白结构域中的磷酸泛酰巯基乙胺辅基联接在一起的现象。

但对脂肪酸合酶二聚体所进行的突变研究发现酮脂酰合成酶和单酰/乙酰转移酶结构域可以与二聚体中任何一个单体上的载体蛋白共同作用; 而对于DBP联接实验结果的再分析显示酮脂酰合成酶的活性位点Cys161的巯基可以被联接到任一单体中载体蛋白4'-磷酸泛酰巯基乙胺的巯基上。而且,发现只含有一个完整单体的异源二聚化的脂肪酸合酶能够进行棕榈酸酯的合成。 以上的这些实验结果与之前的“头对尾”模型并不相符,于是另一个模型被提出:两个单体上的酮脂酰合成酶和单酰/乙酰转移酶结构域位于接近脂肪酸合酶二聚体中心的位置,在这一位置上,它们能够与任一单体中的载体蛋白接触。

磷酸化形式具有活性的酶是

磷酸酶(phosphatase)是一种能够将对应底物去磷酸化的酶,即通过水解磷酸单酯将底物分子上的磷酸基团除去,并生成磷酸根离子和自由的羟基。磷酸酶的作用与激酶的作用正相反,激酶是磷酸化酶,可以利用能量分子,如ATP,将磷酸基团加到对应底物分子上。在许多生物体中都普遍存在的一种磷酸酶是碱性磷酸酶。

磷酸酶可以被分为两类:碱性磷酸酶和酸性磷酸酶。

磷酸化修饰酶活性时,修饰位点在

1. PABP在翻译起始中的作用 所有真核生物mRNA 5′端都有帽子结构,早在1976年Shtkin就根据体外翻译实验结果指出,5′端帽子有增强翻译效率的作用。

此后众多研究证实,大多数mRNA的翻译依赖于帽子结构。除了帽子外,真核生物mRNA的3′端大都有polyA尾巴,在许多体内实验和高活性的体外翻译体系中都观察到,mRNA polyA结构与翻译效率有直接的关系,带polyA的mRNA比无polyA尾巴的相应mRNA的翻译效率高得多。5′端帽子和3′端polyA能够协同地调节mRNA的翻译效率。进一步研究表明,真核生物翻译起始过程中,polyA被PABP所结合,通过PABP影响翻译。PABP在真核生物中高度保守,含有4个RNA识别模体(RNA recognition motif, RRM)。Sachs等首先证明,PABP参与翻译起始。PABP能协助60S亚基与40S亚基结合从而促使80S核糖体的形成〔5〕。生化方面的证据也揭示了PABP在翻译起始中的作用。无论是polyA还是5′端帽子结构都不能单独作用于翻译,而只能协同作用,PABP在此过程中参与帽子和其起始因子的相互作用〔3、6〕。可能PABP可以直接与CBP作用或通过一个中介物间接作用(如图1),通过这种相互作用,mRNA的两末端在空间上十分靠近而形成环状。这与40多年前电子显微照相观察到多核糖体是环状的实验结果一致。可能真核生物就是通过两末端作用而提高翻译效率的。图1 翻译起始mRNA两末端的相互作用 如果在溶菌酶的体外翻译体系中加入外源polyA,蛋白质的合成就受抑制,这表明外源polyA结合(squester)了一种翻译必须成分。Gallie等还发现,没有帽子结构的mRNA的抑制效应比有帽子的mRNA大,表明含5′端帽子的mRNA能高效竞争易被外源polyA结合的某成分。而且,加入纯化的eIF4F和eIF4B能逆转polyA导致的抑制效应。可见,这种外源polyA所结合的成分就是eIF4F、eIF4B。虽然这些因子能直接作用于polyA,但是它们与polyA的亲合力只有它们与PABP的亲合力的二分之一左右〔7〕。对此最可能的解释是,polyA与eIF4F、eIF4B的结合是通过PABP/polyA复合物和各因子间的蛋白质-蛋白质相互作用完成的。在酵母和植物中,PABP与eIF4F(eIFiso4F)的大亚基eIF4G(eIFiso4G)直接作用而促进40S亚基与mRNA结合〔7、8〕。但哺乳动物的PABP却不和eIF4G直接作用。最近在哺乳动物中发现了一个与eIF4G具一定同源性的PABP作用蛋白,PAIP-1。Craig等〔9〕就此提出了一个模型,认为哺乳动物PABP和eIF4A以PAIP-1为中介而在polyA和5′-UTR间形成一个桥,5′端帽子和polyA对翻译起始的协同作用或许是按以下步骤完成的:eIF4A通过与eIF4G作用而召集于5′端帽子,而帽子反过来又促进eIF4A的召集反应(图1),然后eIF4A以PAIP-1为中介与PABP作用〔4、9〕。在植物中,不但eIF4F(eIFiso4F)和eIF4B能分别提高PABP对polyA的亲和力,而且两者还能协同影响PABP对polyA的结合力。提示PABP、eIF4F、eIF4B三因子间必有一个功能上的相互作用〔7〕。而在哺乳动物体内,eIF4F含量较低,为提高翻译效率,eIF4F与PABP结合以分别提高它们与帽子及polyA的结合〔4〕。PABP与其相关起始因子的分子间相互作用受细胞间PABP和mRNA浓度的控制,在一定浓度下,polyA(很可能是与PABP共同作用)能选择性提高体外mRNA的翻译。而且,两末端的这种PABP参与的分子间相互作用对翻译前mRNA的完整性起着检测作用,从而可以阻止不完整的mRNA的翻译。PABP在起始中参与分子间作用的另一个原因,也许是通过两末端靠近促进再起始。已有证据表明,40S亚基在翻译结束后仍与mRNA结合在一起;与mRNA结合的核糖体能被优先召集。在GCN4 ORF的上游有 4个小的上游开放阅读框(suORF)。GCN4 mRNA为了翻译远端开放阅读框,40S亚基在近端suORF翻译后仍与mRNA结合着。随着第一suORF翻译的终止及60S亚基的脱离,仍有50%的40S亚基与mRNA结合继续进行扫描,从而提高翻译效率。40S亚基在翻译终止后,仍结合于mRNA的3′-UTR有利于再起始,而3′-UTR长度决定其结合的时间。翻译效率低的mRNA往往利用这种机制,构建一系列3′-UTR长度不一的mRNA,随着3′-UTR长度加长,翻译效率也提高。3′-URT越长,翻译终止后,核糖体仍结合于3′-UTR的时间也长,从而提高了它们的召集反应。而且在此过程中,结合在mRNA上的40S亚基浓度比已从mRNA上脱离的40S亚基浓度高。PABP/polyA复合物和eIF4F/5′端帽子复合物可能便于再召集〔4〕。2. 两末端的相互作用提高mRNA稳定性 PABP和CBP的相互作用不但能促进高效翻译起始,而且在维持mRNA的完整性方面也起着重要作用〔4、9〕。在酵母和哺乳动物中,mRNA在降解时,去polyA的反应发生于去帽子之前。polyA首先降解导致PABP从mRNA上释放,随着PABP的释放,5′端帽子被去帽子酶DcplP切掉,整个mRNA也迅速被5′→3′RNA核糖体外切酶XrnlP降解。PABP从mRNA上的释放使5′端帽子易受攻击,PABP在此过程中起了保护作用。PABP能增强植物eEF4F和帽子结构的结合,说明PABP是以eIF4G为中介通过稳定eIF4E与帽子的结合以发挥其功能〔2〕。而在哺乳动物中,mRNA的去polyA发生在5′ 端帽子降解之前,说明PABP很可能以PAIP-1为中介促进eIF4F与帽子结合而发挥其保护作用〔4〕。3. mRNA两端功能性作用的调节 有多种内外因素调节mRNA 5′端帽子和polyA的相互作用,如蛋白质修饰等。哺乳动物细胞培养时,当血清饥饿时翻译受抑制,反之翻译又被激活。此外,胰岛素也能以浓度依赖的方式诱导血清饥饿细胞帽子/polyA协同作用促进翻译,说明对PABP和帽子相关起始因子相互作用的调节(可能以PAIP-1为中介)是胰岛素信号转导途径的一部分〔11〕。胰岛素的调节可能是通过蛋白因子磷酸化来完成的〔4〕。如诱导eIF4E发生磷酸化,从而提高了它与帽子结合的活性,或促使eIF4E结合蛋白发生磷酸化,促进eIF4E与eIF4G的相互作用,最终影响eIF4A的召集,从而影响其与PAIP-1作为两末端间“桥”的作用。基因诱导是另一种调节两末端功能性作用的方式。研究发现,T细胞被激活后诱导产生PAIP-1,然后PAIP-1与polyA结合蛋白(iPABP)作用〔9〕。环境胁迫如热激,一方面能使多核糖体快速解体,另一方面使mRNA的帽子和polyA的相互作用下降而抑制翻译。热激直接或间接地使与PABP结合的蛋白因子的磷酸化状态发生变化,如使哺乳动物eIF4E和eIF4B〔1〕、植物eIF4B〔11〕发生去磷酸化。去磷酸化直接降低了植物eIF4F/eIF4B和PABP的作用;而在哺乳动物中,去磷酸化间接降低eIF4A的召集及其与PAIP-1/PABP/polyA复合物作用的机会,从而抑制翻译。4. 无polyA和帽子的mRNA末端相互作用的功能 研究表明,没有polyA或帽子结构的mRNA的两末端也能发生相互作用对翻译起作用。哺乳动物中的细胞周期调控组蛋白的mRNA没有polyA,但其5′端有一个保守的茎环结构,该结构是核胞质转运和调控不同细胞周期时mRNA稳定性所必需的。同时发现它对以茎环结构终止的哺乳动物mRNA的高效翻译也是必需的。这种茎环结构类似于polyA,它作为调节因子的活性依赖于5′端帽子,表明5′端帽子和茎环结构间也存在相互作用。在病毒中发现了一些有polyA而没有5′端帽子的mRNA,如番茄蚀刻病毒的基因组mRNA,利用一个5′端前导序列代替5′端帽子授于mRNA进行不依赖帽子的翻译功能。5′端前导序列就象5′端帽子一样和polyA发生相互作用,促进高效翻译。但是,介导这种相互作用及细胞周期调控组蛋白mRNA两末端作用的蛋白因子仍在研究之中。其它一些缺帽子或polyA的病毒RNA两端也显示了功能性相互作用,这种作用是通过与帽子或polyA功能类似的RNA元件来完成的。如TMV mRNA没有polyA,但含有一个20bp的3′-UTR,具有与polyA相似的功能。此3′-UTR是一个包含5个RNA假结(pseudo-knots)和一个类似tRNA的末端区域的高级结构。没有polyA或帽子结构的非保守mRNA的研究说明,开放阅读框旁侧的序列元件或许是高效翻译的基础。关于蛋白质翻译机制还有许多问题仍不清楚,环状mRNA翻译可能就是蛋白质翻译机制之一,这还有待进一步研究。

酶的磷酸化和去磷酸化作用是

底物水平磷酸化是指高能化合物的放能水解作用或与基团转移相偶联的ATP合成作用。

不包括光合磷酸化或呼吸链中氧化磷酸化的ATP生成过程。

例如:糖酵解途径中产生的高能磷酸化合物甘油酸-1,3-二磷酸和烯醇式磷酸丙酮酸在酶的作用下,高能磷酸基团转移到ADP分子上生成ATP。

酶的磷酸化和去磷酸化位点通常在哪种氨基酸残基上

产物磷酸化是将磷酸基团加在中间代谢产物上或加在蛋白质上的过程。

其中除去磷酸基团的酶称为磷酸酶。

蛋白质磷酸化可发生在许多种类的氨基酸(蛋白质的主要单位)上,其中以丝氨酸为多,接着是苏氨酸。

而酪氨酸则相对较少磷酸化的发生,不过由于经过磷酸化之后的酪氨酸较容易利用抗体来纯化,因此酪氨酸的磷酸化作用位置也较广为了解。

磷酸基团的添加或除去(去磷酸化)对许多反应起着生物“开/关”作用。

磷酸基团的添加或除去能使酶活化或失活,控制诸如细胞分裂这样的过程。添加磷酸基团的酶称为激酶;除去磷酸基团的酶称为磷酸酶。

磷酸化就是通过磷酸转移酶在底物上加上一个磷酸基团。

产物磷酸化意义:

(1)细胞内的信号蛋白主要分为两大类:一类在蛋白激酶的作用下磷酸化,共价结合ATP所提供的磷酸基团;另一类则在信号作用下结合GTP,通常以GTP取代GDP。

(2)这两种胞内信号蛋白的共同特征是,在信号达到时通过获得一个或几个磷酸集团而被激活,而在信号减弱时能去除这些集团,从而失去活性。

在信号中继网中,某个信号蛋白磷酸化通常造成下游的蛋白依次发生磷酸化,形成磷酸化级联反应。

(3)蛋白质的磷酸化主要集中在肽链中的酪氨酸、丝氨酸、苏氨酸残基上,这些残基上具有游离的羟基,且本身不带电荷;

当磷酸化作用后,蛋白质便具有了电荷,从而使结构发生变化,进一步引起蛋白质活性的变化,这也是蛋白质磷酸化的意义所在。

磷酸化酶通过接受或脱去磷酸基而调节活性,因此它属于

碱性磷酸酶是一种能够将对应底物去磷酸化的酶,即通过水解磷酸单酯将底物分子上的磷酸基团除去,并生成磷酸根离子和自由的羟基,这类底物包括核酸、蛋白、生物碱等。而该脱去磷酸基团的过程被称为去磷酸化或脱磷酸化。碱性磷酸酶是磷酸酶的一种,磷酸酶的作用与激酶的作用正相反,激酶是磷酸化酶,可以利用能量分子,如ATP,将磷酸基团加到对应底物分子上。

碱性磷酸酶在碱性环境有最大活力,对来源于细菌中的ALP来说,其最适pH是8.0,而对来源于牛的ALP则是8.5。

磷酸化部位在活性中心,所以改变了酶的活性

酶切啊,太熟悉了。 酶切是根据酶切样品的量跟酶切体系中酶的活性来确定的,如果是酶切PCR产物的话,跟你所加的保护碱基数目也是有关的。

一般做酶切的时候加的酶都是过量的,切三四个小时,可以保证获得足够干净的载体,譬如假如你切载体时间太短的话,载体不容易纯化掉,然后就会混入到你的连接产物中影响连接效率,很难挑到构建的克隆,另外酶切时间不宜太长,太长的话会把载体给切碎掉,尤其是有一些有星号活性的酶,切的时间稍微长一载体就会碎掉,影响你的实验结果。

版权声明:xxxxxxxxx;

原文链接:https://www.fanque.com.cn/aa1b3AG4GAVZRAQ.html

发表评论:

管理员

  • 内容144525
  • 积分0
  • 金币0
关于我们
l番茄知识网是实用的健康养生科普知识及日常生活保健小常识大全网站,分享春夏秋冬四季健康饮食养生保健小知识、运动对健康的好处、中医养生食疗做法等健康的生活方式及养生之道,学习健康养生百科知识尽在番茄健康养生知识网。
快捷菜单
健康养生知识
联系方式
电话:
地址:
Email:admin@qq.com
注册登录
注册帐号
登录帐号

Copyright © 2022 番茄知识网 Inc. 保留所有权利。 Powered by

页面耗时0.7105秒, 内存占用1.93 MB, 访问数据库18次

鄂ICP备2022009988号-2

  • 我要关灯
    我要开灯
  • 客户电话
    807220904

    工作时间:8:00-18:00

    客服电话

    电子邮件

    admin@qq.com

  • 官方微信

    扫码二维码

    获取最新动态

  • 返回顶部